• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 7 Issue 4
Dec.  2019
Turn off MathJax
Article Contents
SOSI Benjamin, BARONGO Justus, GETABU Albert, et al. 2019: Electrical-hydraulic conductivity model for a weathered-fractured aquifer system of Olbanita, Lower Baringo Basin, Kenya Rift. Journal of Groundwater Science and Engineering, 7(4): 360-372. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.007
Citation: SOSI Benjamin, BARONGO Justus, GETABU Albert, et al. 2019: Electrical-hydraulic conductivity model for a weathered-fractured aquifer system of Olbanita, Lower Baringo Basin, Kenya Rift. Journal of Groundwater Science and Engineering, 7(4): 360-372. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.007

Electrical-hydraulic conductivity model for a weathered-fractured aquifer system of Olbanita, Lower Baringo Basin, Kenya Rift

doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.007
  • Publish Date: 2019-12-28
  • Groundwater yield in the Kenya Rift is highly unsustainable owing to geological variability. In this study, field hydraulic characterization was performed by using geo-electric approaches. The relations between electrical-hydraulic (eh) conductivities were modeled hypothetically and calibrated empirically. Correlations were based on the stoch-astic models and field-scale hydraulic parameters were contingent on pore-level parameters. By considering variation in pore-size distributions over eh conduction interval, the relations were scaled-up for use at aquifer-level. Material-level electrical conductivities were determined by using Vertical Electrical Survey and hydraulic conductivities by analyzing aquifer tests of eight boreholes in the Olbanita aquifer located in Kenya rift. VES datasets were inverted by using the computer code IP2Win. The main result is that ln T=0.537 (ln Fa)+3.695; the positive gradient indicating eh conduction through poresurface networks and a proxy of weathered and clayey materials. An inverse (1/F-K) correlation is observed. Hydraulic parameters determined using such approaches may possibly contri-bute significantly towards sustainable yield management and planning of groundwater resources.
  • 加载中
  • LI M, TANG Y B, Bernabé Y, et al. 2017. Percolation connectivity, pore size, and gas apparent permeability: Network simulations and comparison to experimental data. Journal of Geophysical Research: Solid Earth, 122(7): 4918-4930.
    Jusri T, Thomas A, Ghanim A, et al. 2018. Delineating porosity distribution for an offshore groundwater reservoir at the New Jersey Shelf by Seismic Inversion. In 80th EAGE Conference and Exhibition. DOI: 10.3997/2214-4609.201800930.
    Colombier M, Wadswortha F B, Gurioli L, et al. 2017. The evolution of pore connectivity in volcanic rocks. Earth and Planetary Science Letters, 462: 99-109.
    Hynek S, Comas X, Brantley SL. 2017. The effect of fractures on weathering of igneous and volcaniclastic sedimentary rocks in the Puerto Rican tropical rain forest. Procedia Earth and Planetary Science, 17: 972-975.
    Ren S, Parsekian A D, Zhang Y, et al. 2019. Hydraulic conductivity calibration of logging NMR in a granite aquifer, Laramie Range, Wyoming. Groundwater, 57(2): 303-319.
    Salem H S, Chilingarian G V. 1999. The cementation factor of Archie’s equation for shaly sandstone reservoirs. Journal of Petroleum Science and Engineering, (232):83-93. DOI:10. 1016/S0920-4105(99)00009-1.
    Dai S, Santamarina J C, Waite W F, et al. 2012. Hydrate morphology: Physical properties of sands with patchy hydrate saturation. Journal of Geophysical Research: Solid Earth, 117(B11): 11205.
    Maréchal J C, Dewandel B. 2004. Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer. Water Resources Research, 40: W11508.
    JU Jin-feng, LI Quan-sheng, XU Jia-lin, et al. 2019. Self-healing effect of water-conducting fractures due to water-rock interactions in undermined rock strata and its mechanisms. Bulletin of Engineering Geology and the Environment: 1-11.
    Bernabé Y, Li M, Tang Y B, Brian E. 2016. Pore space connectivity and the transport properties of rocks. Oil & Gas Science and Technology, 71(50). https://doi.org/10.2516/ ogst/201 5037.
    Jiang Z, Van-Dijke MIJ, S Geiger, et al. 2017. Pore network extraction for fractured porous media. Advances in Water Resources, 107: 280-289.
    Ahmed A S, Revil A, Byrdina S, et al. 2018. 3D electrical conductivity tomography of volcanoes. Journal of Volcanology and Geothermal Research, 356: 243-263.
    Koch K, Kemna A, Irving J, et al. 2011. Impact of changes in grain size and pore space on the hydraulic conductivity and spectral induced polarization response of sand. Hydrology and Earth System Sciences, 15(6): 1785-1794.
    Sosi B. 2013. Hydraulic characterization of the Kabatini Aquifer, Upper Lake Nakuru Basin, Kenya rift, using geophysical and pumping test data. International Journal Development and Sustainability, 2(3): 2093-2109.
    Medici G, West L J, Chapman P J, et al. 2019. Prediction of contaminant transport in fractured carbonate aquifer types: A case study of the Permian Magnesian Limestone Group (NE England, UK). Environmental Science and Pollution Research: 1-22.
    Bernabé Y, Zamora M, Li M, et al. 2011. Pore connectivity, permeability, and electrical formation factor: A new model and comparison to experimental data. Journal Geophysical Research: Atmospheres, 116(B11): 1-15.
    LIN Yuan, SUN Hong-guang, ZHANG Yong, et al. (2018). Temporal scaling analytical method to identify multifractionality in groundwater head fluctuations. Groundwater, 57(3): 485-491.
    Wong P, Koplik J, Tomanic JP. 1984. Conductivity and permeability of rocks. Physical Review B, 30(11): 6606-6614. DOI:10.1103/physrevb.30. 6606.
    Deka M, Kumar A. 2010. Enhanced electrical and electrochemical properties of PMMA-clay nanocomposite gel polymer electrolytes. Electrochimica Acta, 55(5): 1836-1842.
    Grunewald E, Walsh D. 2018. Recent advancements and applications of logging and surface magnetic resonance for groundwater investigations. ASEG Extended Abstracts, 1: 1-1.
    Renshaw C E, Dadakis J S. 2000. Measuring fracture apertures: A comparison of methods. Geophysical Research Letters, 27(2): 289-292.
    Dhakate R. 2011. Hydrogeophysical parameter estimation for aquifer characterisation in hard rock environments: A case study from Jangaon sub-watershed, India. Journal of Oceanography and Marine Science, 2(3): 50-62.
    Paz C, Alcalá F J, Carvalho J M, et al. 2017. Current uses of ground penetrating radar in groundwater-dependent ecosystems research. Science of the Total Environment, 595: 868-885.
    Medici G, West L J, Mountney N P. 2018. Characterization of a fluvial aquifer at a range of depths and scales: The Triassic St Bees Sandstone Formation, Cumbria, UK. Hydrogeology Journal, 26(2): 565-591.
    Weijermars R, Khanal A. 2019. Elementary pore network models based on complex analysis methods (CAM): Fundamental insights for shale field development. MDPI: Energies, 12: 1243. DOI:10.3390/en12071243.
    Revil A, Murugesu M, Prasad M, et al. 2017. Alteration of volcanic rocks: A new non- intrusive indicator based on induced polarization measurements. Journal of Volcanology and Geothermal Research, 341: 351-362.
    Schoen J H. 2011. Physical properties of rocks: A workbook (Vol.8). Elsevier.
    WANG Peng, CHEN Hua-li, MENG Xu-hui, et al. 2018. Uncertainty quantification on the macroscopic properties of heterogeneous porous media. Physical Review E, 98(3). DOI:https://doi.org/10.1103/PhysRevE.98.033306.
    McLachlan P J, Chambers J E, Uhlemann S S, et al. 2017. Geophysical characterisation of the groundwater surface water interface. Advances in Water Resources, 109: 302-319.
    Bernabé Y, Li M, Maineult A. 2010. Permeability and pore connectivity: A new model based on network simulations. Journal Geophysical Research: Atmospheres, 115(B10): 1-14.
    NIU Fu-jun, GAO Ze-yong, LIN Zhan-ju, et al. 2019. Vegetation influence on the soil hydrological regime in permafrost regions of the Qinghai-Tibet Plateau, China. Geoderma, 354(15): 113892.
    Koedel U. 2018. International conference on novel methods for subsurface characterization and monitoring: From theory to practice: NovCare 2017. Environmental Earth Sciences.
    Bernabé Y, Bruderer C. 1998. Effect of the variance of pore size distribution on the transport properties of heterogeneous networks. Journal Geophysical Research: Atmospheres, 103(B1): 513-526.
    Hill M E, Stewart M T, Martin A. 2010. Evaluation of the MODFLOW-2005 conduit flow process. Groundwater, 48(4): 549-559.
    Dubreuil-Boisclair C, Gloaguen E, Marcotte D, et al. 2011. Heterogeneous aquifer characterization from ground-penetrating radar tomography and borehole hydrogeophysical data using nonlinear Bayesian simulations. Geophysics, 76(4): J13-J25.
    Telford W M, Telford W M, Geldart L P, et al. 1990. Applied Geophysics. Cambridge University Press.
    Fetter C. 1990. Applied hydrogeology. 2nd ed. New Delhi: CBS Publishers & Distributors PVT. Ltd: 592.
    Spariharijaona A, Eswaran P, Joel B, et al. 2019. Static dissolution-induced 3D pore network modification and its impact on critical pore attributes of carbonate rocks. Petroleum Exploration and Development, 46(2): 374-383.
    Habib A, Sorensen J P, Bloomfield J P. 2017. Temporal scaling phenomena in groundwater-floodplain systems using robust detrended fluctuation analysis. Journal of Hydrology, 549: 715-730.
    Purvance T D, Andricevic R. 2000. On the electrical-hydraulic conductivity correlation in aquifers. Water Resources Research, 36(10): 2905-2913.
  • Relative Articles

    [1] Meng-lei Ji, Shuai-chao Wei, Wei Zhang, Feng Liu, Yu-zhong Liao, Ruo-xi Yuan, Xiao-xue Yan, Long Li, 2024: Characterization of rock thermophysical properties and factors affecting thermal conductivity−A case study of Datong Basin, China, Journal of Groundwater Science and Engineering, 12, 4-15.  doi: 10.26599/JGSE.2024.9280002
    [2] ILUNGA Nyembwe, AMADI Akobundu Nwanosike, Gilbert NDATIMANA, Nelson OKOT, Raphaël TSHIMANGA Muamba, 2024: Evaluation of aquifer hydraulic properties from resistivity and pumping test data in parts of Gwagwalada, Northcentral Nigeria, Journal of Groundwater Science and Engineering, 12, 309-320.  doi: 10.26599/JGSE.2024.9280023
    [3] Daniel Nnaemeka Obiora, Johnson Cletus Ibuot, 2023: Electrical geophysical evaluation of susceptibility to flooding in University of Nigeria, Nsukka main campus and its environs, Southeastern Nigeria, Journal of Groundwater Science and Engineering, 11, 422-434.  doi: 10.26599/JGSE.2023.9280033
    [4] Hao ZHOU, Yong WU, Feng HUANG, Xue-fang TANG, 2021: Experimental simulation and dynamic model analysis of Cadmium (Cd) release in soil affected by rainfall leaching in a coal-mining area, Journal of Groundwater Science and Engineering, 9, 65-72.  doi: 10.19637/j.cnki.2305-7068.2021.01.006
    [5] Habtamu Semunigus Demisse, Abebe Temesgen Ayalew, Melkamu Teshome Ayana, Tarun Kumar Lohani, 2021: Extenuating the parameters using HEC-HMS hydrological model for ungauged catchment in the central Omo-Gibe Basin of Ethiopia, Journal of Groundwater Science and Engineering, 9, 317-325.  doi: 10.19637/j.cnki.2305-7068.2021.04.005
    [6] Zhao-xian Zheng, Xiao-shun Cui, Pu-cheng Zhu, Si-jia Guo, 2021: Sensitivity assessment of strontium isotope as indicator of polluted groundwater for hydraulic fracturing flowback fluids produced in the Dameigou Shale of Qaidam Basin, Journal of Groundwater Science and Engineering, 9, 93-101.  doi: 10.19637/j.cnki.2305-7068.2021.02.001
    [7] Chun-lei GUI, Zhen-xing WANG, Rong MA, Xue-feng ZUO, 2021: Aquifer hydraulic conductivity prediction via coupling model of MCMC-ANN, Journal of Groundwater Science and Engineering, 9, 1-11.  doi: 10.19637/j.cnki.2305-7068.2021.01.001
    [8] ZHAO Yue-wen, WANG Xiu-yan, LIU Chang-li, LI Bing-yan, 2020: Finite-difference model of land subsidence caused by cluster loads in Zhengzhou, China, Journal of Groundwater Science and Engineering, 8, 43-56.  doi: 10.19637/j.cnki.2305-7068.2020.01.005
    [9] Muhammad Juandi, 2020: Water sustainability model for estimation of groundwater availability in Kemuning district, Riau-Indonesia, Journal of Groundwater Science and Engineering, 8, 20-29.  doi: 10.19637/j.cnki.2305-7068.2020.01.003
    [10] Hong-wei SONG, Fan XIA, Hai-dong MU, Wei-qiang WANG, Ming-sen SHANG, 2020: Study on detecting spatial distribution availability in mine goafs by ultra-high density electrical method, Journal of Groundwater Science and Engineering, 8, 281-286.  doi: 10.19637/j.cnki.2305-7068.2020.03.008
    [11] Fatima Zahra FAQIHI, Anasse BENSLIMANE, Abderrahim LAHRACH, Mohamed CHIBOUT, Mohamed EL MOKHTAR, 2020: Recognition of the hydrogeological potential using electrical sounding in the KhemissetTiflet region, Morocco, Journal of Groundwater Science and Engineering, 8, 172-179.  doi: 10.19637/j.cnki.2305-7068.2020.02.008
    [12] Qiao-ling YUAN, Zhi-ping LI, Lei-cheng LI, Shu-li WANG, Si-yu YAO, 2020: Pharmaceuticals and personal care products transference-transformation in aquifer system, Journal of Groundwater Science and Engineering, 8, 358-365.  doi: 10.19637/j.cnki.2305-7068.2020.04.006
    [13] Babak Ghazi, Rasoul Daneshfaraz, Esmaeil Jeihouni, 2019: Numerical investigation of hydraulic characteristics and prediction of cavitation number in Shahid Madani Dam's Spillway, Journal of Groundwater Science and Engineering, 7, 323-332.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.003
    [14] YANG Liu, WEN Xue-ru, WU Xiao-li, PEI Li-xin, YUE Chen, LIU Bing, GUO Si-jia, 2019: Height prediction of water flowing fractured zones based on BP artificial neural network, Journal of Groundwater Science and Engineering, 7, 354-359.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.006
    [15] A Muthamilselvan, N Rajasekaran, R Suresh, 2019: Mapping of hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur District of Tamil Nadu, India, Journal of Groundwater Science and Engineering, 7, 264-281.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.007
    [16] WANG Ji-ning, MENG Yong-hui, 2016: Characteristics analysis and model prediction of sea-salt water intrusion in lower reaches of the Weihe River, Shandong Province, China, Journal of Groundwater Science and Engineering, 4, 149-156.
    [17] JI Rui-li, ZHANG Ming, SU Rui, GUO Yong-hai, ZHOU Zhi-chao, LI Jie-biao, 2016: Research of in-situ hydraulic test method by using double packer equipment, Journal of Groundwater Science and Engineering, 4, 41-51.
    [18] LU Chuan, LI Long, LIU Yan-guang, WANG Gui-ling, 2014: Capillary Pressure and Relative Permeability Model Uncertainties in Simulations of Geological CO2 Sequestration, Journal of Groundwater Science and Engineering, 2, 1-17.
    [19] GAO Zong-jun, ZHU Zhen-hui, LIU Xiao-di, XU Yan-lan, 2014: The Formation and Model of High Fluoride Groundwater and In-situ Dispelling Fluoride Assumption in Gaomi City of Shandong Province, Journal of Groundwater Science and Engineering, 2, 34-39.
    [20] LIU Chun-lei, YANG Hui-feng, WANG Gui-ling, 2014: Back calculation of soil hydraulic parameters based on HYDRUS-1D, Journal of Groundwater Science and Engineering, 2, 46-53.
  • 加载中

Catalog

    Article Metrics

    Article views (464) PDF downloads(259) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return